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Abstract6

We clarify relationships between conditional (CAR) and simultaneous (SAR) autoregressive mod-7

els. We review the literature on this topic and find that it is mostly incomplete. Our main result is8

that a SAR model can be written as a unique CAR model, and while a CAR model can be written9

as a SAR model, it is not unique. In fact, we show how any multivariate Gaussian distribution10

on a finite set of points with a positive-definite covariance matrix can be written as either a CAR11

or a SAR model. We illustrate how to obtain any number of SAR covariance matrices from a12

single CAR covariance matrix by using Givens rotation matrices on a simulated example. We also13

discuss sparseness in the original CAR construction, and for the resulting SAR weights matrix.14

For a real example, we use crime data in 49 neighborhoods from Columbus, Ohio, and show that15

a geostatistical model optimizes the likelihood much better than typical first-order CAR models.16

We then use the implied weights from the geostatistical model to estimate CAR model parameters17

that provides the best overall optimization.18

19
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1 Introduction22

Cressie (1993, p. 8) divides statistical models for data collected at spatial locations into two23

broad classes: 1) geostatistical models with continuous spatial support, and 2) lattice models, also24

called areal models (Banerjee et al., 2004), where data occur on a (possibly irregular) grid, or25

lattice, with a countable set of nodes or locations. The two most common lattice models are the26

conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, both notable27

for sparseness of their precision matrices. These autoregressive models are ubiquitous in many28

fields, including disease mapping (e.g., Clayton and Kaldor, 1987; Cressie and Chan, 1989; Lawson,29

2013), agriculture (Cullis and Gleeson, 1991; Besag and Higdon, 1999), econometrics (Anselin,30

1988; LeSage and Pace, 2009), ecology (Lichstein et al., 2002; Kissling and Carl, 2008), and image31

analysis (Besag, 1986; Li, 2009). CAR models form the basis for Gaussian Markov random fields32

(Rue and Held, 2005) and the popular integrated nested Laplace approximation methods (INLA,33

Rue et al., 2009), and SAR models are popular in geographic information systems (GIS) with the34

GeoDa software (Anselin et al., 2006). Hence, both CAR and SAR models serve as the basis for35

countless scientific conclusions. Because these are the two most common classes of models for lattice36

data, it is natural to compare and contrast them. There has been sporadic interest in studying37

the relationships between CAR and SAR models (e.g., Wall, 2004), and how one model might or38

might not be expressed in terms of the other (Haining, 1990; Cressie, 1993; Martin, 1987; Waller39

and Gotway, 2004), but there is little clarity in the existing literature on the relationships between40

these two classes of autoregressive models.41

Historically, CAR and SAR models were obtained constructively, which naturally led to re-42

sults on conditions of the constructions that yielded positive-definite covariance matrices. However,43

our goal is the opposite. We investigate how to obtain the properties of CAR and SAR models from44

a positive definite covariance matrix. We aim to clarify, and add to, the existing literature on the45

relationships between CAR and SAR covariance matrices. Cressie and Wikle (2011, p. 185) show46

how to obtain a CAR covariance matrix from a geostatistical covariance matrix, and, by extension,47

from any valid covariance matrix. We add to this by showing that any positive-definite covariance48
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matrix for a multivariate Gaussian distribution on a finite set of points can be written as either a49

CAR or a SAR covariance matrix, and hence any valid SAR covariance matrix can be expressed as50

a valid CAR covariance matrix, and vice versa. This result shows that on a finite dimensional space,51

both SAR and CAR models are completely general models for spatial covariance, able to capture52

any positive-definite covariance. While CAR and SAR models are among the most commonly-used53

spatial statistical models, this correspondence between them, and the generality of both models,54

has not been fully described before now. These results also shed light on some previous literature.55

CAR and SAR models are often developed with sparseness in mind, where sparseness is the notion56

that the precision matrix has many zeros, allowing for the use of compact computer storage and fast57

computing algorithms for sparse matrices. Our results do not necessarily lead to sparse precision58

matrices for the SAR or CAR specifications, which is a desirable property for these models, so we59

spend some time investigating this with examples and discussion.60

This paper is organized as follows: In Section 2, we review SAR and CAR models and lay61

out necessary conditions for these models. In Section 3, we provide theorems that show how to62

obtain SAR and CAR covariance matrices from any positive definite covariance matrix, which also63

establishes the relationship between CAR and SAR covariance matrices. In Section 4, we provide64

examples of obtaining SAR covariance matrices from a CAR covariance matrix on fabricated data,65

and a real example for obtaining a CAR covariance matrix from a geostatistical covariance matrix.66

Finally, in Section 5, we conclude with a detailed discussion of the incomplete results of previous67

literature.68

2 Review of SAR and CAR models69

In what follows, we denote matrices with bold capital letters, and their ith row and jth column70

with small case letters with subscripts i, j; for example, the i, jth element of C is ci,j . Vectors of71

fixed values are denoted as lower case bold letters while vectors (or matrices) of random variables72

are bold, capital, and italic; let Z ≡ (Z1, Z2, . . . , Zn)T be a vector of n random variables at the73

nodes of a graph (or junctions of a lattice). The edges in the graph, or connections in the lattice,74
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define neighbors, which are used to model spatial dependency. Broad reviews of SAR and CAR75

can be found in Besag (1974), Wall (2004), and Ver Hoef et al. (2018), and in many books (e.g.,76

Anselin, 1988; Haining, 1990; Cressie, 1993; Schabenberger and Gotway, 2005; Cressie and Wikle,77

2011; Banerjee et al., 2014).78

2.1 SAR Models79

Consider the SAR model with mean zero. An explicit autocorrelation structure is imposed,80

Z = BZ + ν, (1)

where the n × n spatial weights matrix, B, is relating Z to itself, and ν ∼ N(0,Ω), where con-81

ventionally Ω is diagonal with positive diagonal values. These models are generally attributed to82

Whittle (1954). Solving for Z, note that conventionally sites do not depend on themselves so B83

has zeros on the diagonal, and that (I−B)−1 must exist (Cressie, 1993; Waller and Gotway, 2004),84

where I is the identity matrix. Then Z ∼ N(0,ΣSAR), where85

ΣSAR = (I−B)−1Ω(I−BT )−1; (2)

see, for example, Cressie (1993, p. 409). The spatial dependence in the SAR model is due to the86

matrix B which causes the simultaneous autoregression of each random variable on its neighbors.87

Note that B does not have to be symmetric because it does not appear directly in the inverse of88

the covariance matrix (i.e., precision matrix). The covariance matrix must be positive definite.89

For SAR models, it is enough that (I−B) is nonsingular (i.e., that (I−B)−1 exists), because the90

quadratic form, writing it as (I−B)−1Ω[(I−B)−1]T , with Ω containing positive diagonal values,91

ensures ΣSAR will be positive definite.92

In summary, the following conditions must be met for ΣSAR in (2) to be a valid SAR93

covariance matrix:94

S1 (I−B) is nonsingular,95
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S2 Ω is diagonal with positive diagonal elements, and96

S3 bi,i = 0, ∀ i.97

2.2 CAR models98

The term “conditional,” in the CAR model, is used because the distribution of each element of99

the random process is specified conditionally on the values at the neighboring nodes. Let Zi be a100

random variable at the ith location, again assuming that the expectation of Zi is zero for simplicity,101

and let zj be its realized value. The CAR model is typically specified as102

Zi|z−i ∼ N

 n∑
j=1

ci,jzj ,mi,i

 , (3)

where z−i is the vector of all zj where j 6= i, C is the spatial weights matrix with ci,j as its i, jth103

element, ci,i = 0, and M is a diagonal matrix with positive diagonal elements mi,i. Note that mi,i104

may depend on the values in the ith row of C. In this parameterization, the conditional mean of105

each Zi is a weighted linear combination of values at neighboring nodes. The variance component,106

mi,i, often varies with node i, and thus M is generally heteroscedastic. In contrast to SAR models,107

it is not obvious that (3) leads to a full joint distribution for Z. Besag (1974) used Brook’s lemma108

(Brook, 1964) and the Hammersley-Clifford theorem (Hammersley and Clifford, 1971; Clifford,109

1990) to show that, when (I−C)−1M is positive definite, Z ∼ N(0,ΣCAR), with110

ΣCAR = (I−C)−1M. (4)

ΣCAR must be symmetric, requiring111

ci,j
mi,i

=
cj,i
mj,j

, ∀ i, j. (5)

Most authors describe CAR models as the construction (3), with the condition that ΣCAR must be112

positive definite given the symmetry condition (5). However, more specific statements are possible113

on the necessary conditions for (I − C), making a comparable condition to S1 for SAR models.114
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We provide a proof, Proposition 1 in the Appendix, showing that if M is diagonal with positive115

diagonal elements, along with (5) (forcing symmetry on ΣCAR), then ΣCAR is positive definite if116

and only if (I − C) has positive eigenvalues. Note that it might be easier to model symmetric117

M−1/2CM1/2, as it establishes a link between C, M, and (5) directly (Cressie and Chan, 1989),118

and then (I−M−1/2CM1/2) must have positive eigenvalues for ΣCAR to be positive definite (which119

is used as part of the proof to Proposition 1).120

In summary, the following conditions must be met for ΣCAR in (4) to be a valid CAR121

covariance matrix:122

C1 (I−C) has positive eigenvalues,123

C2 M is diagonal with positive diagonal elements,124

C3 ci,i = 0, ∀ i, and125

C4 ci,j/mi,i = cj,i/mj,j , ∀ i, j.126

2.3 Weights Matrices127

In practice, B = ρsW and C = ρcW are usually used to construct valid SAR and CAR models,128

where W is a weights matrix with wi,j 6= 0 when locations i and j are neighbors, otherwise129

wi,j = 0. Neighbors are typically pre-specified by the modeler. When i and j are neighbors, we130

often set wi,j = wj,i = 1 (so W is symmetric), or use row-standardization so that
∑n

j=1wi,j = 1;131

that is, dividing each row in unstandardized W by wi,+ ≡
∑n

j=1wi,j yields an asymmetric row-132

standardized matrix that we denote as W+. For CAR models, define M+ as the diagonal matrix133

with mi,i = 1/wi,+, then (5) is satisfied. The row-standardized CAR model’s covariance matrix134

can be written equivalently as135

Σ+ = σ2(I− ρcW+)−1M+ = σ2(diag(W1)− ρcW)−1, (6)

where 1 is a vector of all ones, σ2 is an overall variance parameter, and diag(·) creates a diagonal136

matrix from a vector. A special case of the CAR model, called the intrinsic autoregressive model137

(IAR) (Besag and Kooperberg, 1995), occurs when ρc = 1, but the covariance matrix does not138

exist, so we do not consider it further.139
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There can be confusion on how ρ is constrained for SAR and CAR models, which we now140

clarify. Suppose that N is a square matrix with real eigenvalues, as would be the case if N = W141

for symmetric W. If W is asymmetric with possibly complex eigenvalues, then for the CAR142

covariance matrix (4), Cressie and Chan (1989) use N = M−1/2WM1/2, which is symmetric with143

real eigenvalues due to CAR condition (C4). Note that Li et al. (2012) use N = Ω−1/2WΩ1/2 in144

the SAR setting (2) and estimate Ω from data, and deal directly with the possibility of complex145

eigenvalues. In addition, if Ω is unconstrained, then condition (C4) could be applied for SAR models146

to Ω such that N = Ω−1/2WΩ1/2 is symmetric (Wall, 2004). Let {λi} be the set of eigenvalues of147

N, and let {ωi} be the set of eigenvalues of (I− ρN). Then, in the Appendix (Propositions 2, 3),148

we show that ωi = (1−ρλi). Li et al. (2007) note that when all λi 6= 0, (I−ρN) will be nonsingular149

for all ρ /∈ {λ−1i }. However, notice that if λi = 0, then ωi = 1 for all ρ. In fact, if all λi = 0,150

then all ωi = 1, and (I− ρN) will be nonsingular, satisfying SAR model condition S1. In general,151

then, ρ /∈ {λ−1i } whenever λi 6= 0 is necessary and sufficient for SAR model condition S1. If any152

λi 6= 0, then at least two λi are nonzero because tr(N) =
∑n

i=1 λi = 0. If at least two eigenvalues153

are nonzero, then λ[1], the smallest eigenvalue of N, must be less than zero, and λ[N ], the largest154

eigenvalue of N, must be greater than zero. Then 1/λ[1] < ρ < 1/λ[N ] ensures that (I − ρN) has155

positive eigenvalues (Appendix, Propositions 2, 3) and satisfies condition C1 for CAR models.156

In practice, the restriction 1/λ[1] < ρ < 1/λ[N ] is often used for both CAR and SAR157

models. When considering W+, the restriction becomes 1/λ[1] < ρ < 1 (Haining, 1990, p. 82),158

where usually 1/λ[1] < −1. Wall (2004) shows irregularities for negative ρ values near the lower159

bound for both SAR and CAR models, thus many modelers simply use −1 < ρ < 1. In fact,160

in many cases, only positive autocorrelation is expected, so a further restriction is used where161

0 < ρ < 1 (e.g., Li et al., 2007). For these constructions, ΣSAR and ΣCAR typically show more162

positive marginal autocorrelation with increasing positive ρ values, and more negative marginal163

autocorrelation with decreasing negative ρ values (Wall, 2004). There has been little research on164

the behavior of autocorrelation outside of these limits for SAR models.165

Weights in W can be based on distance (Cressie and Chan, 1989) or may be modeled as166

asymmetric for SAR models (Burden et al., 2015). Cressie et al. (2005) establish a link between W167
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and M that allows ρc to be constrained and interpreted as a partial correlation parameter when168

working with spatial rates rather than row-standardization, and this idea, of parameterizing so that169

ρc is a partial correlation, is generalized for numbers of neighbors in the ACAR model of Cressie170

and Wikle (2011, p. 188). A useful parameterization for CAR models was given by Pettitt et al.171

(2002); if γi,j represents some function of distance between sites i and j (and often set to zero172

beyond a certain range), then C in (4) is constructed as ci,i = 0,173

ci,j =
φγi,j

1 + |φ|
∑

j 6=i γi,j
, (7)

for i 6= j, and M in (4) is constructed as174

mi,i =
1

1 + |φ|
∑

j 6=i γi,j
. (8)

Here, φ is an unbounded parameter, obviating the need to find eigenvalues for C.175

Our goal is to develop relationships that allow a CAR covariance matrix, satisfying conditions176

C1 - C4, to be obtained from a SAR covariance matrix, satisfying conditions S1 - S3, and vice versa.177

We develop these in the next section, and, in the Discussion and Conclusions section, we contrast178

our results to the incomplete results of previous literature.179

3 Relationships between CAR and SAR models180

Assume a covariance matrix for a SAR model as given in (2) and a covariance matrix for a CAR181

model as given in (4). Cressie and Wikle (2011, p. 185-186) give the result that any Gaussian182

distribution on a finite set of points, Z ∼ N(0,Σ), can be written with a covariance matrix183

parameterized either as a CAR model, Σ = (I −C)−1M. We show the additional result that the184

distribution of Z can be written as a SAR model with covariance matrix, Σ = (I−B)−1Ω(I−BT )−1.185

It is straightforward to generalize to the case where the mean is nonzero so, for simplicity of notation,186

we use the zero mean case. A corollary is that any CAR covariance matrix can be written as a187

SAR covariance matrix, and vice versa.188
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We now state the theorems that both SAR and CAR covariance matrices are sufficiently189

general to represent any finite-dimensional positive-definite covariance matrix. We outline the190

proofs, which is useful for discussion. Detailed proofs, showing that conditions S1-S3 are satisfied191

for SAR models, and conditions C1-C4 are satisfied for CAR models, are given in the Appendix.192

Theorem 1. Any positive definite covariance matrix Σ can be expressed as the covariance matrix193

of a SAR model (I−B)−1Ω(I−BT )−1, (2), for a (non-unique) pair of matrices B and Ω.194

For a basic outline to the proof of Theorem 1, write Σ−1 = LLT , where L will be full195

rank and suppose it has positive diagonal elements. Note that L is not unique. For example, a196

Cholesky decomposition (Harville, 1997, p.229) is different from a square-root matrix (Harville,197

1997, p.543), yet either could be used to obtain L, and each will have strictly positive diagonal198

elements. Decompose L into L = G−P where G is diagonal and P has zeros on the diagonal, so199

LLT = (G−P)(GT−PT ). Then set Ω−1 = GG and BT = PG−1, so Σ−1 = (I−BT )Ω−1(I−B),200

expressed in SAR form (2).201

The result that follows was given by Cressie and Wikle (2011, p. 185-186), that any multi-202

variate Gaussian distribution can be written as a CAR model. Their construction of the equivalent203

CAR model corrects an earlier one given by Cressie (1993, p. 434) where the diagonal elements of204

C were not necessarily zero.205

Theorem 2. Any positive-definite covariance matrix Σ can be expressed as the covariance matrix206

of a CAR model (I−C)−1M, (4), for a unique pair of matrices C and M.207

For a basic outline to the proof of Theorem 2, let Q = Σ−1 and decompose it into Q =208

D − R, where D is diagonal with elements di,i = qi,i (the diagonal elements of the precision209

matrix Q), and R has zeros on the diagonal (ri,i = 0) and off-diagonals equal to ri,j = −qi,j . Set210

C = D−1R and M = D−1. Then Σ−1 = D−R = D(I−D−1R) = M−1(I−C), with Σ expressed211

in CAR form (4)212

Having shown that any positive definite matrix Σ can be expressed as either the covariance213

matrix of a CAR model or the covariance matrix of a SAR model, we have the following corollary.214

Corollary 1. Any SAR model can be written as a unique CAR model, and any CAR model can be215

written as a non-unique SAR model.216
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Proof. The proof follows directly by first noting that a SAR model yields a positive-definite covari-217

ance matrix, and applying Theorem 2, and then noting that a CAR model yields a positive-definite218

covariance matrix, and applying Theorem 1.219

The following corollary gives more details on the non-unique nature of the SAR models.220

Corollary 2. Any positive-definite covariance matrix can be expressed as one of an infinite number221

of B matrices that define the SAR covariance matrix in (2).222

Proof. Write Σ−1 = LLT as in Theorem 1. Let Ah,s(θ) be a Givens rotation matrix (Golub and223

Van Loan, 2013), which is a sparse orthonormal matrix that rotates angle θ through the plane224

spanned by the h and s axes, where h indexes the row of A, and s indexes the column. The225

elements of Ah,s(θ) are as follows. For i /∈ {h, s}, ai,i = 1. Also ah,h = as,s = cos(θ), ah,s = sin(θ)226

and as,h = − sin(θ). All other entries of Ah,s(θ) are equal to zero. That is, Ah,s(θ) has form227 

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 cos(θ) 0 · · · 0 sin(θ) 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 − sin(θ) 0 · · · 0 cos(θ) 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1



.

Notice that Σ−1 = LLT = L(AT
h,s(θ)Ah,s(θ))L

T = L∗L
T
∗ , where L∗ = LAT

h,s(θ). A SAR covariance228

matrix can be developed as readily for L∗ as for L in the proof of Theorem 1. Any of the infinite229

values of θ ∈ [0, 2π) will result in a unique Ah,s(θ), leading to a different L∗, and a different B230

matrix in (A.1), but yielding the same positive-definite covariance matrix Σ.231

3.1 Implications of Theorems and Corollaries232

Note that for Corollary 2, additional B matrices that define a fixed positive-definite covariance233

matrix in Corollary 2 could also be obtained by repeated Givens rotations. For example, let234

L∗ = LAT
1,2(θ)A

T
3,4(η) for angles θ and η. Then a new B can be developed for this L∗ just as235

readily as those in the proof to Corollary 2. We use this idea extensively in the examples.236
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Theorem 1 helps clarify the use of Ω. Authors often write the SAR model covariance matrix237

as (I−B)−1(I−BT )−1, assuming that Ω = I in (2). In the proofs to Theorem 1 and Corollary 2, this238

requires finding L with ones on the diagonal so that G = I. It is interesting to consider if one can239

always find such L, which would justify the practice of using the simpler form, (I−B)−1(I−BT )−1,240

for SAR models. We now show that this formulation does not allow the use of Theorem 1. Consider241

the case where the dimensions of the matrices involved are 2 × 2. Then a matrix L that has ones242

on the diagonal, but is otherwise completely general, is243

L =

 1 a

b 1

 ,

so244

LLT =

 1 + a2 a+ b

a+ b 1 + b2

 .

Now the matrix,245  2 2

2 5

 ,

is positive definite, but is not expressible as LLT if L is restricted to having ones on the diagonal.246

We conclude that not every possible positive definite covariance matrix can be written in the form247

(I−B)−1(I−BT )−1, so Ω is necessary in (I−B)−1Ω(I−BT )−1 for Theorem 1 to hold.248

In Section 2.3, we discussed how most CAR and SAR models are constructed by constraining249

ρ in ρW. Consider Theorem 1, where L is a lower-triangular Cholesky decomposition. Then P has250

zero diagonals and is strictly lower triangular, and so BT = PG−1 is strictly lower triangular. In251

this construction, all of the eigenvalues of B are zero. Thus, for SAR models, there are unexplored252

classes of models that do not depend on the typical construction B = ρW.253

Most CAR and SAR models are developed such that C and B are sparse matrices, containing254

mostly zeros, but containing positive elements whose weights depend locally on neighbors. Although255

we demonstrated how to obtain a CAR covariance matrix from a SAR covariance matrix, and vice256

versa, there is no guarantee that using a sparse C in a CAR model will yield a sparse B in a257
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SAR model, or vice versa. Note, however, that Zimmerman and Nunez-Anton (2009, p. 244-245)258

show how antedependence models, with conditional dependence in one dimension where data are259

ordered by time, can be viewed as CAR models. These one-dimensional CAR models lead to a260

sparse Cholesky decomposition (Zimmerman and Nunez-Anton, 2009, Theorem 2.3, p. 41), which261

would lead to a sparse SAR model formulation. The antedependence models work in more than one262

dimension, and Zimmerman and Nunez-Anton (2009, Theorem 2.3, p. 41) generalizes to obtaining263

a sparse Cholesky decomposition from a CAR model. In fact, that is the goal of (Rue and Held,264

2005, Section 2.4, p. 40), who give algorithms to concentrate nonzero values near the diagonal, and265

show that if an outer (away from the diagonal) triangular part of the matrix C in a CAR model266

is all zeros, then that same outer triangular part of L will also be zeros. We return to this idea in267

the examples.268

4 Examples269

We provide two examples, one where we illustrate Theorem 1 primarily, and a second where we270

use Theorem 2. In the first, we fabricated a simple neighborhood structure and created a positive271

definite matrix by a CAR construction. Using Givens rotation matrices, we then obtained various272

non-unique SAR covariance matrices from the CAR covariance matrix. We also explore sparseness273

in B for SAR models when they are obtained from sparse C for CAR models.274

For a second example, we used real data on neighborhood crimes in Columbus, Ohio. We275

model the data with the two most common CAR models, using a first-order neighborhood model276

where C is both unstandardized and row-standardized. Then, from a positive-definite covariance277

matrix obtained from a geostatistical model, we obtain the equivalent and unique CAR covariance278

matrix. We use the weights obtained from the geostatistical covariance matrix to allow further279

CAR modeling, finding a better likelihood optimization than both the unstandardized and row-280

standardized first-order CAR models.281
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4.1 Uniqueness and sparseness for SAR models282

Consider the graph in Figure 1a, which shows an example of neighbors for a CAR model. Using one283

to indicate a neighbor, and zeros elsewhere, the W matrix was used to create the row-standardized284

W+ matrix in (6). Values of ρcW+, where ρc = 0.9, are shown graphically in Figure 1b. For the285

resulting covariance matrix, Σ+ in (6), the Cholesky decomposition was used to create L as in286

Theorem 1. Using (A.1) in Theorem 1, the weights matrix B created from L is shown in Figure 1c.287

Note from Figure 1b that, beyond indices separated by more than 5, all elements are zero. Those288

indices separated by 5 can be seen with a vertical orientation in Figure 1a. Consequently, the289

off-diagonal elements in the Cholesky decomposition shown in Figure 1c, with indices separated290

by more than 5, are all zero (in keeping with Theorem 2.3, Zimmerman and Nunez-Anton, 2009,291

p. 41), and many of those indices separated by less than 5 are non-zero “fill-in” values (Rue and292

Held, 2005, p. 44). One approach to obtain sparseness works by concentrating non-zero values in293

W to be near the diagonal by re-indexing the data (Rue and Held, 2005, p. 47). Other approaches294

include tapering (Furrer et al., 2006) and thresholding (Bickel and Levina, 2008) for covariance295

matrices (for a broad treatment, see Pourahmadi, 2013).296

For the same covariance matrix Σ+, we also used the spectral decomposition to create297

L as in Theorem 1. The weights matrix B created from this L, using (A.1) in Theorem 1, is298

shown in Figure 1d. Note that the B matrix in Figure 1d is less sparse than B in Figure 1c,299

although they both yield exactly the same covariance matrix by the SAR construction (2), which300

we verified numerically. Figure 1c, because it is strictly upper triangular, also verifies our comments301

in Section 3.1; that there exists some B whose eigenvalues are all zero.302

In addition to re-indexing data with the Cholesky decomposition to obtain sparseness, we303

sought to transform the B matrix in Figure 1d to a sparser form using the proof to Corollary 2 and304

the Givens rotations. For a nonzero vector x = (x1, . . . , xn), an index of sparseness (Hoyer, 2004)305

is306

sparseness(x) =

√
n−

∑
i |xi|√∑

i x
2
i√

n− 1
,
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which ranges from zero to one. Ignoring the dimensions of a matrix, we create the matrix function307

f(B) =

∑
i,j |bi,j |√∑

i,j b
2
i,j

,

which is a measure of the fullness of a matrix. We propose an iterative algorithm to minimize308

f(B) for orthonormal Givens rotations as explained in Corollary 2. Let Lh,s(θ) = LAT
h,s(θ), where309

L = VE−1/2V−1 used the spectral decomposition of Σ+ as in the proof of Theorem 1, and Ah,s(θ)310

is a Givens rotation matrix as in the proof of Corollary 2. Denote θ∗k as the value of θ that minimizes311

f(B) when B is created by decomposing LAT
h,s(θ) into P and G (as in (ii) in Theorem 1), while312

constraining θ to values satisfying bi,j ≥ 0 ∀ i, j. Then L
[1]
1,2 ≡ LAT

1,2(θ
∗
1), where k = 1 is the first313

iteration. For the second iteration, let θ∗2 be the value that minimizes f(B) for B created from314

L
[1]
1,2A

T
1,3(θ), and hence for k = 2, L

[2]
1,3 ≡ L

[1]
1,2A

T
1,3(θ

∗
2). We cycled through h = 1, 2, . . . , 24 and315

s = (h + 1), . . . , 25 for each iteration k in a coordinate descent minimization of f(B). We cycled316

through all of h and s eight times for a total of 8(25)(25 − 1)/2 = 2400 iterations. The value317

of f(B) for each iteration is plotted in Figure 1e and the final B matrix is given in Figure 1f.318

Although we did not achieve the sparsity of Figure 1c, we were able to increase sparseness from319

the starting matrix in Figure 1d. Note that the B matrix depicted in Figure 1f yields exactly the320

same covariance matrix as the B matrices shown in Figures 1c,d. There are undoubtedly better321

ways to minimize f(B), such as simulated annealing (Kirkpatrick et al., 1983), and there may be322

alternative optimization criteria. We do not pursue these here. Our goal was to show that it is323

possible to explore many configurations of matrix weights in SAR models, which produce equivalent324

covariance matrices, by using orthonormal Givens rotations of the L matrix.325

4.2 Columbus Crime Data326

The Columbus data are found in the spdep package (Bivand et al., 2013; Bivand and Piras, 2015)327

for R (R Core Team, 2016). Figure 2 shows 49 neighborhoods in Columbus, Ohio. We used328

residential burglaries and vehicle thefts per thousand households in the neighborhood (Anselin,329

1988, Table 12.1, p. 189) as the response variable. Spatial pattern among neighborhoods appeared330
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autocorrelated (Figure 2), with higher crime rates in the more central neighborhoods. When331

analyzing rate data, it is customary to account for population size (e.g., Clayton and Kaldor,332

1987), which affects the variance of the rates. However, for illustrative purposes, we used raw333

rates. A histogram of the data appeared approximately bell-shaped, thus we assumed a Gaussian334

distribution with a covariance matrix containing autocorrelation among locations.335

First-order neighbors were also taken from the spdep package for R, and are shown by white336

lines in Figure 2. Using a one to indicate a neighbor, and zero otherwise, we denote the 49 × 49337

matrix of weights as Wun, and the CAR precision matrix has C = ρunWun and M = σ2unI in338

(4). Using the eigenvalues of Wun, the bounds for ρun were -0.335 < ρun < 0.167. We added339

a constant independent diagonal component, δ2unI (also called the nugget effect in geostatistics),340

so the covariance matrix was Σun = σ2un(I − ρunWun)−1 + δ2unI. Denote the crime rates as y.341

We assumed a constant mean, so y ∼ N(1µ,Σun), where 1 is a vector of all ones. Let L(θun|y)342

be minus 2 times the restricted maximum likelihood function (REML, Patterson and Thompson,343

1971, 1974) for the crime data, where the set of covariance parameters is θun = (σ2un, ρun, δ
2
un)T .344

We optimized the REML likelihood and obtained L(θ̂un|y) = 388.83. Recall that CAR models are345

generally heteroscedastic (e.g., Wall, 2004). The marginal variances of the estimated model are346

shown in Figure 3a, and the marginal correlations are shown in Figure 4a.347

We also optimized the likelihood using the row-standardized weights matrix, W+ in (6),348

which we denote Wrs. In this case, the CAR precision matrix has C = ρrsW+, −1 < ρrs < 1,349

and M = σ2rsM+ in (4). Again we added a nugget effect, so Σrs = σ2rs(I − ρunW+)−1M+ +350

δ2rsI. For the set of covariance parameters θrs = (σ2rs, ρrs, δ
2
rs)

T , we obtained L(θ̂rs|y) = 397.25.351

This shows that the unstandardized weights matrix Wun provides a substantially larger REML352

likelihood optimization than Wrs. The marginal variances of the row-standardized model are353

shown in Figure 3b, and the marginal correlations are shown in Figure 4b. The difference between354

L(θ̂un|y) and L(θ̂rs|y) indicates that the weights matrix C has a substantial effect for these data.355

To show that a CAR covariance matrix can be developed from any covariance matrix (The-356

orem 2), next we fit a geostatistical model and derive the corresponding CAR covariance matrix.357

We optimized the likelihood with a geostatistical model using a spherical autocorrelation model.358
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Denote the geostatistical correlation matrix as S, where359

si,j = [1− 1.5(ei,j/α) + 0.5(ei,j/α)3]I(di,j < α),

and I(•) is the indicator function, equal to one if its argument is true, otherwise it is zero, and ei,j360

is Euclidean distance between the centroids of the ith and jth polygons in Figure 2. We included361

a nugget effect, so Σsp = σ2spS + δ2spI. For the set of covariance parameters θsp = (σ2sp, α, δ
2
sp)T ,362

we obtained L(θ̂sp|y) = 374.61. The geostatistical model provides a substantially better optimized363

likelihood than either the unstandardized or row-standardized CAR model. The marginal variances364

of geostatistical models are equal (Figure 3c). The estimated range parameter, α̂, is shown by the365

lower bar in Figure 2. Responses at locations separated by a distance greater than that shown by366

the bar are estimated to have zero correlation (Figure 4c).367

It appears that the geostatistical model provides a much better optimized likelihood than the368

two most commonly-used CAR models. Others have compared CAR to geostatistical models (e.g.,369

Banerjee et al., 2003; Hrafnkelsson and Cressie, 2003; Song et al., 2008), and Rue and Tjelmeland370

(2002) and Cressie and Verzelen (2008) use a “closeness” criteria to approximate a geostatistical371

model with a CAR model, but where they enforce some sparsity in the CAR weight matrix. Here,372

we try another way to find a CAR model to compete with the geostatistical model, but where373

the weight matrix is not sparse. Using Theorem 2, as in Cressie and Wikle (2011, p. 185), we374

created Ccg and Mcg as in (A.2) in the Appendix from the positive definite covariance matrix375

of the geostatistical model, Σsp = (I − Ccg)
−1Mcg. Here, we have a CAR representation that376

is equivalent to the spherical geostatistical model. Now consider scaling Ccg with ρcg, so Σcg =377

σ2cg(I− ρcgCcg)
−1Mcg + δ2cgI, which we optimized for θcg = (σ2cg, ρcg, δ

2
cg)

T . For Σcg to be positive378

definite, σ2cg > 0, -1.104 < ρcg < 1.013, and δ2cg ≥ 0. Because θcg = (1, 1, 0)T is in the parameter379

space, we can do no worse than the spherical geostatistical model. In fact, upon optimizing,380

we obtained L(θ̂cg|y) = 373.95, where σ̂2cg = 0.941, ρ̂cg = 1.01, and δ̂2cg = 0, a slightly better381

optimization than the spherical geostatistical model. The marginal variances for this geostatistical-382

assisted CAR model are shown in Figure 3d, and the marginal correlations are shown in Figure 4d.383
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Note the rather large changes from Figure 3c to Figure 3d, and from Figure 4c to Figure 4d, with384

seemingly minor changes in σ̂2cg, from 1 to 0.941, and in ρcg, from 1 to 1.01. Others have documented385

rapid changes in CAR model behavior near the parameter boundaries, especially for ρcg (Besag and386

Kooperberg, 1995; Wall, 2004). Note that for optimizing likelihoods, we transform ρcg with a logit387

so that it is unbounded, and scaled so that the inverse logit is between -1.104 and 1.013. On the388

logit-transformed scale, the rapid changes in ρcg near the bounds are no longer dramatic as they389

get stretched toward −∞ and ∞.390

5 Discussion and Conclusions391

Some detailed comparisons of the mathematical relationships between CAR and SAR models have392

been given in Besag (1974), Haining (1990, p. 89), and Cressie (1993, p. 408). Haining (1990, p.393

89) provided several results that we restate using notation from Sections 2.1 and 2.2, and show394

that some are incorrect or incomplete.395

In an attempt to create a CAR covariance matrix from a SAR covariance matrix, assume396

that B satisfies conditions S1-S3 and Ω = I in (2). Let M = I and C be symmetric in (4) [which397

omits the important case (6)]. Then setting SAR and CAR covariances matrix equal to each other,398

399

(I−C)−1 = [(I−B)(I−BT )]−1 = (I−B−BT + BBT )−1, (9)

and Haining (1990) claims that C can be obtained from B by setting400

C = B + BT −BBT , (10)

which is repeated in texts by Waller and Gotway (2004, p. 372) and Schabenberger and Gotway401

(2005, p. 339), and in the literature (e.g., Dormann et al., 2007). However, aside from the lack of402

generality due to assumptions M = I, Ω = I, and symmetric C, we note that (10) is incomplete403

and too limiting to be useful, as given in the following remark.404

Remark 1. Condition C3 in Section 2.2 is not satisfied for C in (10) except when B contains all405
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zeros.406

Proof. Because B has zeros on the diagonal, B + BT will have zeros on the diagonal. Denote bi as407

the ith row of B. Then the ith diagonal element of BBT will be bib
T
i , which will be zero only if all408

elements of bi are zero. Hence, B + BT −BBT will have zeros on the diagonal only if B contains409

all zeros.410

In an attempt to create a SAR covariance matrix from a CAR covariance matrix, assume411

the same conditions as for (9), and that C satisfies conditions C1-C4. Let (I −C) = SST , where412

S is a Cholesky decomposition. Haining (1990) suggested S = I−B and setting B equal to I− S.413

However, this is incomplete because condition S3 in Section 2.1 will be satisfied only if S has all414

ones on the diagonal, which is also extremely limiting.415

For another approach to relate SAR and CAR covariance matrices, Haining (1990) described416

the model F(Z − µ) = Hε, where var(ε) = V. Then E((Z − µ)(Z − µ)T ) = F−1HVHT (F−1)T .417

Now let F = (I − C), H = I, and V = (I − C) (this appears to originate in Martin (1987)).418

The constructed model is really a SAR model except that it violates condition S2 by allowing419

V = (I −C). Alternatively, this can be seen as an attempt to create a SAR model from a CAR420

model by assuming an inverse CAR covariance matrix for the error structure of the SAR model,421

which gains nothing. Because these arguments are unconvincing, and other authors argue that one422

cannot go uniquely from a CAR to a SAR (e.g., Mardia, 1990), we can find no further citations423

for the arguments of Haining (1990) on obtaining a SAR covariance matrix from a CAR covariance424

matrix.425

Besag (1974) provided a demonstration of how a SAR covariance matrix with first-order426

neighbors in B leads to a CAR covariance matrix with third-order neighbors in C, which we427

reproduce here. Assume a rectangular lattice, as in Figure 1a, but with all first order neighbors,428

and assume it is on a torus (making the top row neighbors of the bottom row, and the left side429

neighbors of the right side, so all sites have 4 neighbors. Let Zi,j be a random variable in the ith430

row and j column of the lattice. Assume a SAR model (2) with non-symmetric B, created from431

Zi,j = β1Zi−1,j + β′1Zi+1,j + β2Zi,j−1 + β′2Zi,j−1 + εi,j , (11)
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where assume that var({εi,j}) = Ω = I. Then Besag (1974) showed that the corresponding CAR432

model is433

E(Zi,j |{zk,` : (k, `) 6= (i, j)}) = (1 + β21 + β′1
2

+ β22 + β′2
2
)−1{(β1 + β′1)(zi−1,j + zi+1,j)

+ (β2 + β′2)(zi,j−1 + zi,j+1)− (β1β
′
2 + β′1β2)(zi−1,j−1 + zi−1,j+1)

− (β1β2 + β′1β
′
2)(zi−1,j+1 + zi+1,j−1)− (β1β

′
1)(zi−2,j + zi+2,j)− (β2β

′
2)(zi,j−2 + zi,j+2)}, (12)

which follows by creating the covariance matrix from the SAR weights (11) and applying Theorem 2.434

Cressie (1993, p. 409) gave a version of (12) where B was symmetric, although his formula had435

terms in it with incorrect signs. Besag’s result (12) is useful for its generality in either the symmetric436

or non-symmetric case. If all β1, β
′
1, β2, β

′
2 are nonzero the first-order SAR (11) leads to third-order437

CAR weights (12). It appears that, generally, there will be no equivalent SAR covariance matrices438

for first and second-order CAR covariance matrices. However, consider setting β′1 = β2 = β′2 = 0,439

in which case an asymmetric first-order SAR weighting leads to a first-order CAR matrix (although440

only for the row weightings). Moveover, our demonstration in Figure 1c shows that a sparse B441

may be obtained from a sparse CAR model, although it is asymmetric and may not have the usual442

neighborhood interpretation.443

There are other parameterizations for CAR models. In (6) and (7) we introduced parame-444

terizations for a CAR model that can more generally be written as445

ΣCAR = (D−C#)−1,

where the diagonal elements of C# are zero, and D is diagonal. A reviewer pointed out that it is446

also useful to parameterize a CAR model as Σ−1CAR = C∗, in which case the conditional specification447

in terms of elements of C∗ is448

Zi|z−i ∼ N

−∑
j 6=i

c∗i,j
c∗i,i

zj ,
σ2

c∗i,i

 , (13)
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which can be compared to (3). Each parameterization has its virtues. The unscaled weights are449

given directly in (3) including a zero weight for Zi. To build models, one could simply say that C∗450

must be positive definite, but more specific conditions on the diagonals and off-diagonals, similar451

to conditions C1 - C4 in Section 2.2, are useful, as illustrated by the construction of weights in452

Section 2.3. On the other hand, we can go from a SAR covariance matrix to a CAR covariance453

matrix simply by using C∗ = (I−B)Ω−1(I−BT ). It is also easy to see from the proof of Theorem 1454

that it is possible to obtain a non-unique SAR covariance matrix from C∗, as we did for C.455

From Section 2.3, we showed that, for SAR models, pre-specified weights B = ρW are often456

scaled by ρ, and that ρ is often constrained by the eigenvalues of W. However, we also discussed in457

Section 3.1 that weights can be chosen so that all eigenvalues are zero for SAR models. Figure 1c458

provides an example where all diagonal elements of B are zero, and hence a SAR model where all459

eigenvalues of B are zero. We have little information or guidance for developing models where all460

eigenvalues of B are zero, and this provides an interesting topic for future research.461

Wall (2004) provided a detailed comparison on properties of marginal correlation for various462

values of ρ when B or C are parameterized as ρsW and ρcW, respectively, but did not develop463

mathematical relationships between CAR and SAR models. Lindgren et al. (2011) showed that464

approximations to point-referenced geostatistical models based on a finite element basis expansion465

can be expressed as CAR models. In his discussion of the same, Kent (2011) noted that, for a466

given geostatistical model of the Matern class, one could construct either a CAR or SAR model467

that would approximate the Matern model. This indicates a correspondence between CAR and468

SAR models when used as approximations to continuous-space processes, but does not address the469

relationship between CAR and SAR models on a native areal support.470

Our literature review and discussion showed that there have been scattered efforts to es-471

tablish mathematical relationships between CAR and SAR models, and some of the reported re-472

lationships are incomplete on the conditions for those relationships. With Theorems 1 and 2 and473

Corollary 1, we demonstrated that any zero-mean Gaussian distribution on a finite set of points,474

Z ∼ N(0,Σ), with positive-definite covariance matrix Σ, can be written as either a CAR or a475

SAR model, with the important difference that a CAR model is uniquely determined from Σ but476
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a SAR model is not so uniquely determined. This equivalence between CAR and SAR models477

can also have practical applications. In addition to our examples, the full conditional form of the478

CAR model allows for easy and efficient Gibbs sampling (Banerjee et al., 2004, p. 163) and fully479

conditional random effects (Banerjee et al., 2004, p. 86). However, spatial econometricians often480

employ SAR models (LeSage and Pace, 2009), so easy conversion from SAR to CAR models may481

offer computational advantages in hierarchical models and provide insight on the role of fully condi-482

tional random effects. We expect future research will extend our findings on relationships between483

CAR and SAR models and explore novel applications.484
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Figure 1: Sparseness in CAR and SAR models. (a) 5 × 5 grid of spatial locations, with lines
connecting neighboring sites. The numbers in the circles are indices of the locations. (b) Graphical
representation of weights in the ρW+ matrix in the CAR model. The color legend is given below. (c)
Graphical representation of weights in the B matrix when using the Cholesky decomposition, and
(d) when using spectral decomposition. (e) Fullness function during minimization when searching
for sparseness. (f) Graphical representation of weights in the B matrix at the termination of an
algorithm to search for sparseness using Givens rotations on the spectral decomposition in (d).
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Figure 2: Columbus crime map, in rates per 1000 people. Numbers in each polygon are the indices
for locations, and the white lines show first-order neighbors. The estimated range parameter from
the spherical geostatistical model is shown at the bottom.
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Figure 3: Marginal variances by location for Columbus crime data. (a) Unstandardized first-order
CAR model, (b) Row-standardized first-order CAR model, (c) spherical geostatistical model, (d)
CAR model using weights obtained from geostatistical model.
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Figure 4: Marginal correlations for Columbus crime data, none of which were below zero. The
location indices are given by the numbers in Figure 2. (a) Unstandardized first-order CAR model,
(b) Row-standardized first-order CAR model, (c) spherical geostatistical model, (d) CAR model
using weights obtained from geostatistical model.
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APPENDIX: Propositions and Proofs618

The following proposition is used to show condition C1 for CAR models.619

Proposition 1. For the CAR model covariance matrix, ΣCAR = (I − C)−1M in (4), ΣCAR is620

positive definite if and only if all eigenvalues of (I−C) are positive.621

Proof. Note that I−M−1/2CM1/2 will be symmetric because of condition C4, and hence will have622

real eigenvalues. Write Σ−1CAR = M−1/2(I −M−1/2CM1/2)M−1/2. Then ΣCAR and Σ−1CAR are623

positive definite if and only if I−M−1/2CM1/2 is positive definite, i.e., if and only if all eigenvalues624

of (I −M−1/2CM1/2) are positive. Now, (I − C) = M1/2(I −M−1/2CM1/2)M−1/2 has positive625

eigenvalues if and only if (I −M−1/2CM1/2) has positive eigenvalues because they are similar626

matrices (Harville, 1997, p. 525).627

Next, we show the conditions on ρ that ensure that (I−ρW) has either nonzero eigenvalues,628

or positive eigenvalues.629

Proposition 2. Consider the N × N matrix (I − ρW), where wi,i = 0. Let {λi} be the set of630

eigenvalues of W, and suppose all eigenvalues are real. Then631

(i) I− ρW is nonsingular if and only if ρ /∈ {λ−1i } for all nonzero λi.632

(ii) Assume at least two eigenvalues of W are nonzero, and let λ[1] and λ[N ] be the smallest and633

largest eigenvalues, respectively, of W. Then all eigenvalues of I − ρW are positive if and634

only if 1/λ[1] < ρ < 1/λ[N ].635

Proof. Let λi be an eigenvalue of W, with vi a corresponding eigenvector. Then Wvi = λivi,636

implying that vi − ρWvi = vi − ρλivi = (1 − ρλi)vi, i.e., (I − ρW)vi = (1 − ρλi)vi. Thus, for637

every eigenvalue/eigenvector pair (λi,vi) of W, there is a corresponding eigenvalue/eigenvector638

pair (ωi,vi) of (I − ρW) where ωi = 1 − ρλi. Observe that I − ρW is nonsingular if and only if639

all ωi 6= 0, i.e., if and only if ρλi 6= 1 for all i, i.e., if and only if ρ 6= 1/λi for all nonzero λi. This640

establishes part (i). Furthermore, all eigenvalues of I − ρW are positive if and only if ρλi < 1 for641

all i, i.e., if and only if ρ < 1/λi for all i such that λi > 0, ρ > 1/λi for all i such that λi < 0,642

and ρ ∈ (−∞,∞) for all i such that λi = 0. This last set of three conditions can be restated as643

1/λ[1] < ρ < 1/λ[N ], which establishes part (ii).644

645

For CAR models (4), Cressie and Chan (1989) consider the symmetric matrix M−1/2WM1/2
646

and (see Cressie, 1993, p. 559) shows bounds on ρ for I− ρM−1/2WM1/2 so that all eigenvalues647

are positive. Here, we state the proposition without proof, as it proceeds in a similar fashion to648

Proposition 2.649
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Proposition 3. Consider the N × N matrix (I − ρM−1/2WM1/2), where wi,i = 0 and M is650

diagonal with positive values such that M−1/2WM1/2 is symmetric with eigenvalues {λi}. Then651

(i) I− ρM−1/2WM1/2 is nonsingular if and only if ρ /∈ {λ−1i } for all nonzero λi.652

(ii) Assume at least two eigenvalues of M−1/2WM1/2 are nonzero, and let λ[1] and λ[N ] be the653

smallest and largest eigenvalues, respectively, of M−1/2WM1/2. Then all eigenvalues of I−654

ρM−1/2WM1/2 are positive if and only if 1/λ[1] < ρ < 1/λ[N ].655

While this result was developed for CAR models, note that these bounds would also work656

for a SAR covariance matrix (2) if Ω had diagonal elements such that Ω−1/2WΩ1/2 was symmetric657

(Wall, 2004). Before proving Theorems 1 and 2, some preliminary results are useful.658

Proposition 4. If D is a diagonal matrix and Q is a square matrix with zeros on the diagonal of659

the same dimensions as D, then both DQ and QD have zeros on the diagonal.660

Proof. We omit the proof because it is apparent from the algebra of matrix products.661

Proposition 5. Let A, B, and C be square matrices. If A = BC, and A and C have inverses,662

then B has an inverse.663

Proof. Because C has an inverse, B = AC−1, and because A has an inverse, B−1 = CA−1.664

Finally, we show the proofs of Theorems 1 and 2.665

Theorem 1. Any positive definite covariance matrix Σ can be expressed as the covariance matrix666

of a SAR model (I−B)−1Ω(I−BT )−1, (2), for a (non-unique) pair of matrices B and Ω.667

Proof. We consider a constructive proof and show that the matrices B and Ω that we construct668

satisfy conditions S1 - S3.669

(i) Since Σ is positive definite, so is Σ−1 and we may write Σ−1 = LLT where L is full rank with670

positive diagonal elements. Note that L is not unique. A Cholesky decomposition (Harville,671

1997, p.229) could be used, where L is lower triangular, or a spectral (eigen) decomposition672

could be used to obtain a square-root matrix (Harville, 1997, p.543), where Σ−1 = VEVT ,673

with V containing orthonormal eigenvectors and E containing eigenvalues on the diagonal674

and zeros elsewhere. Then L = VE1/2VT is symmetric with positive diagonal elements,675

where the diagonal matrix E1/2 contains the positive square roots of the eigenvalues in E.676

(ii) Decompose L into L = G − P where G is diagonal and P has zeros on the diagonal. Then677

LLT = (G−P)(GT −PT ) by construction.678
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(iii) Then set679

Ω−1 = GG and BT = PG−1. (A.1)

Note that because L has positive diagonal elements, then `i,i > 0, and because G is diagonal680

with gi,i = `i,i, G−1 exists.681

Then Σ−1 = (I−BT )Ω−1(I−B), expressed in SAR form (2). The matrices B and Ω satisfy S1 -682

S3, as follows.683

(S1) Note that P = BTG, so L = G−P = (I−BT )G and LT = G(I−B). Then, by Proposition684

5, (I−B)−1 exists, and hence so does its transpose (I−BT )−1.685

(S2) Because G is diagonal, Ω is diagonal with ωi,i = g2i,i > 0.686

(S3) By Proposition 4, bi,i = 0 because BT = PG−1.687

Theorem 2.688

Any positive-definite covariance matrix Σ can be expressed as the covariance matrix of a689

CAR model (I−C)−1M, (4), for a unique pair of matrices C and M.690

Proof. We add an explicit, constructive proof of the result given by Cressie and Wikle (2011, p.691

185-186) by showing that matrices C and M are unique and satisfy conditions C1 - C4.692

(i) Let Q = Σ−1 and decompose it into Q = D−R, where D is diagonal with elements di,i = qi,i693

(the diagonal elements of the precision matrix Q), and R has zeros on the diagonal (ri,i = 0)694

and off-diagonals equal to ri,j = −qi,j .695

(ii) Set696

C = D−1R and M = D−1. (A.2)

Then Σ−1 = D − R = D(I −D−1R) = M−1(I − C), which shows that Σ may be expressed in697

CAR form (4), satisfying C1 - C4.698

(C1) M is strictly diagonal with positive values, so M and M−1 are positive definite. By hypothesis,699

Σ, and hence Σ−1, are positive definite. Then Σ = (I−C)−1M, so by Proposition 1, (I−C)−1700

has positive eigenvalues and thus so does I−C.701

(C2) mi,i = 1/qi,i, and because Q = Σ−1 is positive definite, we have that qi,i > 0, i = 1, 2, . . . , n.702

Thus, each mi,i > 0. By construction, mi,j = 0 for i 6= j.703

(C3) By Proposition 4, ci,i = 0 because C = D−1R.704

(C4) For i 6= j, we have that ci,j = d−1i,i ri,j . As mi,i = d−1i,i , we have that705

ci,j
mi,i

=
d−1i,i ri,j

d−1i,i

= ri,j = −qi,j .

Because Q = Σ−1 is symmetric, qi,j = qj,i, hence ci,j/mi,i = cj,i/mj,j . The above proof shows706

existence of a CAR representation of any covariance matrix Σ. We now show uniqueness of707
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this CAR representation. Assume that there exists C̃ and M̃, possibly different from C and M708

in (A.2), that satisfy C1 - C4, and also satisfy Σ = M̃−1(I−C̃). From Proposition 4, we have709

that diag(M) = diag(M̃) = diag(Σ−1), and so M = M̃, since M and M̃ are diagonal matrices.710

Furthermore, since M−1(I −C) = Σ = M̃−1(I − C̃), we have that C̃ = I − M̃M−1(I −C),711

but since M = M̃, it immediately follows that C = C̃, and we thus conclude that the CAR712

representation of Σ is unique.713
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